Item20-Interprétation d'une enquête épidémiologique.

Objectifs CNCI

- Discuter et interpréter les résultats des principaux types d'enquête épidémiologique.

Recommandations	Mots-clés / Tiroirs	NPO / A savoir!
- Aucune	- Observationnel: descriptif /analytique - Cohorte: exposition / prospectif / RR - Cas/témoin: maladie / rétrospectif / OR - RR = i(F+)/i(F-) = a/(a+b) / c/(c+d) - OR = côte cas/témoin= [a/c] / [b/d] - Biais: sélection / classement / confusion - Appariement / stratification / restriction - Critères de causalité (Bradford- Hill)	 Observationnel ≠ descriptif Non significatif ≠ éliminer Lien statistique et non causal RR/OR par rapport à l'IC95 Stratification ≠ ajustement

Généralités

Définitions

- Epidémiologie: étude des maladies à l'échelle d'une population: description / facteurs
- Population source: population dans laquelle a été prélevé l'échantillon
- Population cible: population à laquelle on souhait extrapoler les résultats

Classification des études épidémiologiques

- Epidémiologie interventionnelle (expérimentale)
 - = toute enquête où l'attribution de l'exposition est contrôlée par l'investigateur
 - Essais semi-expérimentaux: évaluation d'un programme de prévention (PP°)
 - Etudes « avant / après » = comparaison du même groupe avant et après le PP°
 - Etudes « ici / ailleurs » = comparaison de 2 groupes ayant suivi ou pas le PP°
- Epidémiologie observationnelle (+++)
 - = toute enquête ou l'exposition au facteur étudié ne dépend pas de l'investigateur
 - o $\, !! \,$ Remarque: permettent d'établir un lien statistique $\,$ mais pas causal (A savoir $\, !) \,$
 - Enquêtes descriptives
 - Objectif = description de l'état de santé d'une population donnée
 - Etudes transversales descriptives: calcul de la **prévalence** (hors exposition)
 - Etudes de cohorte descriptives: calcul de l'incidence et mortalité
 - Enquêtes analytiques
 - Objectif = étudier le lien entre une maladie et une exposition à un facteur
 - Etudes de cohorte: calcul d'un risque relatif (RR)
 - Etudes cas-témoin: calcul d'un odds ratio (OR)

Choix du type d'étude +++

		Etudes de cohorte	Etudes cas-témoins
Critères de choix	contexte	facteur unique maladies multiples	maladie unique facteurs multiples
	maladie	fréquente	rare
	exposition	rare	fréquente
	biais	perdus de vue	mémorisation et sélection

	durée / coût	long / coût élevé	courte / coût moindre
	niveau de preuve	Niveau 2 (grade B)	Niveau 3 (grade C)
	groupes	exposés vs. non-exposés	cas vs. témoins
Protocole	critère de sélection	exposition	maladie
	chronologie	prospectif	rétrospectif
	comparaison	incidence de la maladie	côtes d'exposition au facteur
	résultat	risque relatif	odds ratio

- En pratique, avantages/inconvénients
 - Etudes cas-témoins
 - avantages: maladie rare / plusieurs facteurs étudiés / durée courte / coût faible
 - inconvénients: biais de sélection et mémorisation / niveau de preuve faible (3-C)
 - Etudes de cohorte
 - avantages: exposition rare / plusieurs maladies étudiées / niveau de preuve élevé / estime l'incidence et le RR / moins de biais de sélection / chronologie exposition-maladie
 - inconvénient: biais d'attrition (perdus de vue) / durée longue / coût élevé / peu adapté aux maladies rares / étude d'une seule exposition en général

Types d'enquêtes épidémiologiques

Etudes de cohorte

- Objectif
 - Rechercher un lien entre la survenue d'une maladie et l'exposition à un facteur
 - !! distinguer au sein des études de cohorte
 - cohorte descriptive: déterminer l'incidence d'une maladie sans étude de facteur
 - cohorte analytique: rechercher un lien entre la survenue d'une maladie (M) et l'exposition à un facteur (F) = étude exposés-non exposés
- Réalisation
 - Sélection des groupes en fonction de l'exposition / tous sont sains au début +++
 - o Suivi et comparaison de l'**incidence** de la maladie (ou évènement) entre les groupes
 - !! Remarque: l'inclusion des sujets dans les groupes peut
 - se faire au début du suivi = cohorte prospective
 - être reconstitué a posteriori = cohorte historique (« rétrospective »)
- Résultat
 - Dresser le tableau de contingence

	M+	M-
exposés	a	b
non-exposés	С	d

- Calculer l'incidence de la maladie par rapportà l'exposition
 - i(F+) = a / (a+b) et i(F-) = c / (c+d)
 - Remarque: on appelera i le taux d'attaque (TA) si épidémie (cf Surveillance des maladies infectieuses transmissibles.)
- Déterminer le risque relatif (RR) = rapport des incidences
 - RR = i(F+) / i(F-) = p (M+/F+) / p (M+/F-)
 - RR = [a/(a+b)] / [c/(c+d)]
- Interprétation
 - Si RR = 1
 - Relation entre la survenue de la maladie et l'exposition non démontrée
 - !! mais ne signifie pas qu'elle n'existe pas (cf biais, etc) (A savoir !)
 - ∘ Si RR > 1
 - Les sujets exposés ont plus de **risque** d'avoir la maladie: F = facteur de **risque**
 - Un RR de 1.2 correspond à une multiplication du risque par 1.2 (+ 20%)
 - Si RR < 1
 - Les sujets exposés ont moins de risque d'avoir la maladie: F = facteur **protecteur**
 - Un RR de 0.6 correspond à une multiplication par 0.6 = réduction de 40%
- !! Remarque
 - Faire intervalle de confiance (IC) de RR à 95% (RR incluant 95% de la pop)
 - le RR ne sera signicatif que si |RR| > [IC] et que l'**IC ne comprend pas 1** (A savoir !)

Etudes cas-témoins

- Objectif: rechercher un lien entre:
 - le fait d'avoir une maladie (M)
 - o l'exposition antérieure à un facteur (F)
- Réalisation
 - Sélection des groupes en fonction de la maladie: cas (M+) et témoins (M-)
 - o Pas de suivi: recherche rétrospective de l'exposition au facteur pour chacun
 - o Comparaison de la fréquence d'exposition entre les deux groupes
 - Remarque:
 - pour isoler l'effet du facteur, témoins et cas doivent être identiques sauf // F
 - méthode de choix des témoins cruciale: par appariement ou stratification
- Résultat
- o Dresser le tableau de contingence

	cas	témoins
F+	a	b
F-	С	d

- o Calculer de la côte d'exposition par rapport à la maladie
 - côte (cas) = a/c; côte (témoins) = b/d
- Determiner l'odds ratio (OR) = rapport des côtes d'exposition
 - OR = côte (cas) / côte (témoins)
 - OR = [a/c] / [b/d] (= ad/bc: rapport des diagonales)
- Interprétation
 - Si OR = 1
 - Les sujets M+ (cas) n'ont pas été plus exposés au facteur que les témoins
 - Si OR > 1
 - Les sujets M+ (cas) ont été plus exposés au facteur: F = facteur de **risque**
 - Si OR = 1.2: les malades sont en moyenne 20% plus exposés que les sains
 - Si OR < 1
 - Les sujets sains (témoins) ont été plus exposés: F = facteur **protecteur**
- Remarques
 - o Toujours analyser l'OR par rapport à l'IC à 95% pour la significativé (idem RR)
 - o On dit qu'il y a « interaction » entre 2 facteurs si leur effet conjoint est synergique
 - $\circ \rightarrow OR (F1 + F2) > OR (F1) x OR (F2)$

Etudes transversales

- Objectif
- o Déterminer la prévalence d'une maladie selon un facteur à un moment donné
- ∘ !! études **descriptives** et non analytiques (≠ exposés-non exposés / cas-témoins)
- Réalisation
 - o Choix d'un seul échantillon représentatif de la population cible
 - $\circ~$ Puis détermination de la prévalence de la maladie dans exposés / non-exposés
 - o Remarque: pas de suivi: juste un « instantané » de la population à un moment t
- Interprétation
 - o !! Ne démontre aucun lien causal (comme toute étude épiémiologique)
 - Rapide et facile mais biais (sélection +++): niveau de preuve = 4

Interprétation et sources d'erreurs

Fluctuation d'échantillonage

- = variabilité due au hasard entre les différents échantillons étudiés
- Entraîne une différence entre valeurs observées dans échantillon et population cible
- Inhérente au principe même d'échantillonage donc à toute étude épidémiologique +++
- Mesure de la fluctuation = variance ou écart-type
- Pour diminuer la fluctutation = augmenter la taille de l'échantillon !

Biais +++

- Biais = erreur systématique entraînant un écart entre valeurs estimées et réelles (cf La méthodologie de la recherche expérimentale et clinique.
- Biais de sélection
 - Définition
 - Biais liés à la façon de choisir et/ou de suivre l'échantillon

- Surviennent au moment d'inclure les sujets dans l'étude / groupe
- Conséquence = non-représentativité de l'échantillon → extrapolation impossible
- Exemples
 - biais de recrutement
 - si la probabilité d'inclusion dans l'étude est liée au facteur étudié
 - Ex: témoins travailleurs (car forcément en meilleur santé que les cas)
 - biais d'auto-sélection
 - si décision d'inclusion est due à la décision du patient
 - Ex: recrutement par volontariat (non représentatif de la population générale)
 - biais de survie sélective
 - si sujets admis malgré la probabilité de décès pendant l'étude
 - Ex: cohortes sur SIDA phase terminale, sur tous les cancers...
 - biais des « perdus de vue »
 - = sujets inclus dans cohorte puis non retrouvés à la fin
 - Toujours vérifer nombre de sujets inclus // sujets analysés
 - biais de sélection des **témoins**
 - !! le principal biais dans toute étude cas-témoin
 - Les témoins doivent être représentatifs de la population des cas +++
- Moyens de contrôle
 - Randomisation pour la constitution des groupes
 - Choix des témoins par appariement / stratification
 - Définition stricte des critères d'inclusion et d'exclusion
- Biais de classement
 - Définition
 - Biais liés à la façon de mesurer le facteur étudié ou la maladie
 - Surviennent au moment de recueillir les données
 - Remarque: biais de classement = biais d'évaluation = biais de mesure
 - Exemples
 - Biais de subjectivité de l'enquêteur = réponses suggérée ou interprétées
 - Ex: connaissance du statut du malade par l'enquêteur (!! ≠ clinicien)
 - Biais de mémorisation(si recueil déclaratif par interrogatoire +++)
 - !! 2nd biais principal des études cas-témoins (avec sélection des témoins)
 - Ex: un cas se souvient mieux du facteur de risque que le témoin
 - Biais de jugement
 - Ex: classer un cas dans groupe exposé parce qu'on sait qu'il est malade
 - Biais liés au mode d'évaluation
 - Ex: dossiers médicaux incomplets dans une cohorte historique
 - Moyens de contrôle
 - Recueil par questionnaires standardisés et validés
 - Enquêteurs en aveugle
 - Formation des enquêteurs
 - Etude de variabilité inter-enquêteurs
- Biais de confusion
 - Définition
 - Dû à une variable liée à la fois au facteur et à la maladie (facteur de confusion)
 - Exemples
 - Lien entre la caféine et le cancer du poumon..
 - ..sachant qu'on prend le café en même temps qu'on fume une cigarette
 - → association statistique retrouvée bien que non lié = facteur de confusion
 - o Moyens de contrôle
 - a priori
 - Appariement: identifier les facteurs potentiels et apparier les patients
 - Stratification: division de la population en strates selon ces facteurs
 - Restriction: ne pas inclure ceux qui presentent le facteur de confusion
 - Randomisation: seulement dans le cadre d'une étude expérimentale
 - a posteriori
 - Ajustement: analyse multivariée sur les facteurs de confusion

Causalité

- !! OR et RR ne sont qu'une association statistique → ne prouve pas la causalité (A savoir!)
- Pour conclure à la causalité, il faut faire une étude expérimentale (difficile pour un FdR)...
- Donc causalité estimée par association de critères (Bradford-Hill) +++ (9)
 - Force de l'association (RR ou OR élevés)
 - o Reproductibilité (plusieurs études concordantes)

- Chronologie (exposition avant la maladie)
- Spécificité de l'association (1 cause = 1 effet)
- ∘ Relation dose-réponse (risque ↑ si dose d'exposition ↑)
- o Plausibilité biologique (support théorique concordant)
- o Cohérence externe (concorde avec état des connaissances)
- o Evidence expérimentale (si on retire le facteur: on retire la maladie)
- o Analogie (avec d'autres facteurs ou maladies similaires)

Synthèse pour questions fermées

1 définition de l'Odd Ratio?

- Rapport des côtes d'exposition: OR = cote (cas) / cote (témoins)
- 1 type de biais de sélection prépondérant dans les études cas-témoins ?
- Biais de sélection des témoins (appariemment pour le contrer)
- 9 critères qui permettent d'estimer la causalité (entre exposition et maladie)?
- Force de l'association (RR ou OR élevés)
- Reproductibilité (plusieurs études concordantes)
- Chronologie (exposition avant la maladie)
- Spécificité de l'association (1 cause = 1 effet)
- Relation dose-réponse (risque ↑ si dose d'exposition ↑)
- Plausibilité biologique (support théorique concordant)
- Cohérence externe (concorde avec état des connaissances)
- Evidence expérimentale (si on retire le facteur: on retire la maladie)
- Analogie (avec d'autres facteurs ou maladies similaires)